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Abstract. We consider the analogue of the six-vertex model constructed from alternating spin
n/2 and spinm/2 lines, where 16 n < m. We identify the transfer matrix and the space on
which it acts in terms of the representation theory ofUq(ŝl2). We diagonalize the transfer matrix
and compute theS-matrix. We give a trace formula for local correlation functions. Whenn = 1,
the one-point function of a spinm/2 local variable for the alternating lattice with a particular
ground state is given as a linear combination of the one-point functions of the pure spinm/2
model with different ground states. The mixing ratios are calculated exactly and are expressed
in terms of irreducible characters ofUq(ŝl2) and the deformed Virasoro algebra.

An algebraic description of the infinite-volume six-vertex model is given in [1, 2]. There are
two key elements in this approach: to identify the half-infinite space· · ·⊗C2⊗C2⊗C2⊗C2

on which the corner transfer matrix acts, with a level-one irreducible highest-weight module
V (3i) of Uq(ŝl2) (i = 0, 1) [3]; and to identify the half-transfer matrices on this space
with components of theUq(ŝl2) intertwinerV (3i)→ V (31−i )⊗ C2 [4, 2].

The six-vertex model is associated with a lattice of intersecting lines, each carrying a
spin 1

2 representation ofUq(ŝl2). In this letter, we consider the analogous model on a lattice
in which spinn/2 and spinm/2 (16 n < m) lines alternate. Such models were constructed
and analysed using the Bethe ansatz in [5–8]. The simplest example of the type of model
we are considering is the lattice consisting of alternating spin1

2 and spin 1 lines, i.e. the case
n = 1, m = 2 (see figure 2). The half-infinite space on which the corner transfer matrix
of this model acts is· · · ⊗ C3 ⊗ C2 ⊗ C3 ⊗ C2. We shall develop an algebraic picture in
which this space is identified with the tensor productFa,b = V (3a)⊗V (3b), (a, b = 0, 1).
There will now be two half-transfer matrices, associated with spin1

2 and spin 1 lines (see
figures 3(a) and (b)), that we will identify with theUq(ŝl2) intertwiners

φA : V (3a)⊗ V (3b)→ V (3a)⊗ V (31−b)⊗ C2

and

φB : V (3a)⊗ V (3b)→ V (31−a)⊗ C2⊗ V (3b)→ V (31−a)⊗ V (31−b)⊗ C3

respectively. The full space· · ·C3⊗C2⊗C3⊗C2⊗C3⊗C2⊗ · · · will then be identified
with the level zero moduleFa,b ⊗ F∗a,b.
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We develop such a picture for the general case(1 6 n < m), and construct the full
transfer matrix in terms of the intertwinersφA andφB and their duals. We diagonalize the
transfer matrix, and find a pseudoparticle spectrum consisting of only spin 0 and spin1

2
states. Such a spectrum was observed in the casen = 1, m = 2 in [7]. We compute the
S-matrix for these excitations, and give a trace formula for local correlation functions of
the theory.

Using our algebraic picture, we show that the one-point function of a spinn/2 variable
is equal to that in the pure spinn/2 lattice when the ground states of the two different
lattices are chosen correctly. However, we also show that the one-point function of a spin
m/2 variable is a linear combination of the ones for the pure spinm/2 lattice corresponding
to different ground states. We call this result amixing of ground states.

After this brief introduction to some of our results, we will now define our alternating
spin vertex model in some more detail. First of all, the Boltzmann weights are specified by
theR-matrix R(k,l)(ζ1/ζ2) : V (k)ζ1

⊗ V (l)ζ2
→ V

(k)
ζ1
⊗ V (l)ζ2

, whereV (k)ζ ' Ck+1 is theUq(ŝl2)

principal evaluation module, with weight vectorsu(k)i (i = 0, . . . , k), given in [9]. We fix
the normalization such thatR(k,l)(ζ ) = R̄(k,l)(ζ )/κ(k,l)(ζ ), where R̄(k,l)(ζ )(u(k)0 ⊗ u(l)0 ) =
(u
(k)

0 ⊗ u(l)0 ), and

κ(k,l)(ζ ) = ζmin(k,l) (q
2+k+lζ 2; q4)∞(q2+|k−l|ζ−2; q4)∞

(q2+k+lζ−2; q4)∞(q2+|k−l|ζ 2; q4)∞
.

With this normalization, the partition function per unit site of our lattice model will be 1.
A lattice vertex associated with the intersection of a spink/2 and spinl/2 line has six

variables attached to it: spin variablesi, i ′ = (0, . . . , k) andj, j ′ = (0, . . . , l), and spectral
parametersζ1, ζ2 ∈ C. A Boltzmann weightR(k,l)(ζ )i,ji ′,j ′ (with ζ = ζ1/ζ2) is attached to the
configuration of these variables shown in figure 1.

We choose to restrict our parameters to the region−1 < q < 0, 1 < ζ < (−q)−1.
With this restriction, the weightsR(k,l)(ζ )i,ji ′,j ′ with k 6 l that are of the lowest order, and
are larger than all other weights of higher order, are all those that obey the requirement
k 6 i + j 6 l, i ′ = k − i, j ′ = j + 2i − k. For example, ifk = 1 andl = 2, the largest
Boltzmann weights will beR(1,2)(ζ )0,11,0, R(1,2)(ζ )0,21,1, R(1,2)(ζ )1,00,1, andR(1,2)(ζ )1,10,2.

Now consider the finite periodic lattice constructed by alternating 2M spin n/2 with
2M spinm/2 lines in both the horizontal and vertical directions. Such a lattice withM = 2
is shown in figure 2. In this figure, full lines represent spinn/2 lines, and dotted lines spin
m/2 lines. The vertical lines have spectral parameterζ , and horizontal lines have a spectral
paramater equal to 1. We place two horizontal and two vertical spinn/2 lines next to each
other at the centre of the lattice, and two vertical and two horizontal spinm/2 lines next to
each other at the boundaries. We do this purely to simplify the discussion of the spaces on
which the corner transfer matrices act. The order of the spinn/2 and spinm/2 lines can

Figure 1.
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Figure 2.

be switched to a uniform alternating pattern by using the Yang–Baxter equation.
There are(n+ 1)(m− n+ 1) degenerate ground states of the vertex model associated

with this lattice (by a ground state, we mean a configuration that contributes maximally to
the partition function sum). The values of the spin variables in different ground states are
shown in figure 2, in which we use the notationj1 = m+n−(2i+j), ī = n− i, j̄ = m−j ,
j̄1 = m− j1. There is a different ground state corresponding to each choice of the pair of
integers 06 i 6 n, 06 j 6 m that obey the requirementn 6 i + j 6 m. We label such a
ground state by the integers 06 a 6 m− n and 06 b 6 n defined bya = m− i − j and
b = n − i. We are interested in the infinite-volume limit of this lattice taken as follows:
instead of having periodic boundary conditions, we fix the spins at the boundaries of the
lattice to be equal to one of these ground states. We label the partition function byZMa,b,
and consider this lattice in the limitM →∞.

The infinite lattice so defined may be split into four quadrants. The associated corner
transfer matrices are labelledANW(ζ ), ASW(ζ ), ASE(ζ ) andANE(ζ ). A path is defined as
|p〉 = p(s), (s > 0), wherep(s) is the value of the spin variable on thesth line (our
convention is thats increases from east to west, and from south to north).ANW(ζ ) acts on
the path spacePa,b defined by

Pa,b = {|p〉 | p(s) = p̄(s; a, b), s � 0}
where

p̄(s; a, b) =


n− b if s is odd

m− n− a + b if s ≡ 2 mod 4

a + b if s ≡ 4 mod 4.
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We haveANW(ζ ) : Pa,b → Pa,b, ASW(ζ ) : Pa,b → Pm−n−a,n−b, ASE(ζ ) : Pm−n−a,n−b →
Pm−n−a,n−b, andANE(ζ ) : Pm−n−a,n−b → Pa,b. In fact, using the crossing symmetry of the
R-matrix, we can write

ASW(ζ ) = SANW(−q−1ζ−1) ASE(ζ ) = SANW(ζ )S ANE(ζ ) = ANW(−q−1ζ−1)S.

HereS : Pa,b → Pm−n−a,n−b is the operator defined by

p(s) 7−→
{
n− p(s) if s is odd

m− p(s) if s is even.

Baxter’s argument [10] then implies that we haveANW(ζ ) = (constant) ζ−HCTM , where
HCTM is independent ofζ and has a non-negative integer spectrum. The partition function
in the infinite lattice is

Za,b = TrPa,b (ANE(ζ )ASE(ζ )ASW(ζ )ANW(ζ )) ∝ TrPa,b (q
2HCTM).

The next step is to understand the path spacePa,b in terms of the representation
theory ofUq(ŝl2). The Uq(ŝl2) modules relevant to our discussion are the level` > 0
irreducible highest-weight modulesV (λ(`)r ). These are generated by the level` highest-
weight vectorv

λ
(`)
r
(λ(`)r = r31 + (` − r)30, 0 6 r 6 `), which obeyse1vλ(`)r = e0vλ(`)r =

f r+1
1 v

λ
(`)
r
= f `−r+1

0 v
λ
(`)
r
= 0. We use a grading elementD which acts onV (λ(`)r ) as

D(fi1fi2 . . . fiN vλ(`)r ) = N(fi1fi2 . . . fiN vλ(`)r ). LabellingHa,b = V (λ(m−n)a ) ⊗ V (λ(n)b ), we
conjecture that we can identifyPa,b = Ha,b andHCTM = D. We have a proof of this
identification in theq → 0 limit, but omit it here for lack of space.

Now we come to the identification of half-transfer matrices. There are two half-transfer
matrices for our lattice, associated with the insertion of half-infinite spinn/2 and spinm/2
lines respectively (see figures 3(a) and (b)).

We shall identify these with certain components of the following intertwiners:

φA(ζ ) : V (λ(m−n)a )⊗ V (λ(n)b )→ V (λ(m−n)a )⊗ V (σ(λ(n)b ))⊗ V (n)ζ

φB(ζ ) : V (λ(m−n)a )⊗ V (λ(n)b )→ V (σ(λ(m−n)a ))⊗ V (m−n)ζ ⊗ V (λ(n)b )
→ V (σ(λ(m−n)a ))⊗ V (σ(λ(n)b ))⊗ V (m)ζ

Figure 3.
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where σ exchanges the fundamental weights30 ↔ 31. These intertwiners are in turn
defined in terms of the more elementary intertwiner

8(k,k+`)(ζ ) : V (k)ζ ⊗ V (λ(`)r )→ V (σ(λ(`)r ))⊗ V (k+`)ζ k, ` > 1. (1)

We define8(0,`)(ζ ) as the intertwinerV (λ(`)r ) → V (σ(λ(`)r )) ⊗ V
(`)
ζ . We define the

components of8(k,k+`)(ζ ) by

8(k,k+`)(u(k)i ⊗ v) =
k+∑̀
j=0

8
(k,k+`)
i,j (v)⊗ u(k+`)j v ∈ V (λ(`)r ).

The normalization of8(k,k+`)(ζ ) is fixed by the requirement

〈σ(λ(`)r )|8(k,k+`)
0,`−r (ζ )|λ(`)r 〉 = 1.

The intertwiner8(k,k+`)(ζ ) is the generalization to level` > 1 of the intertwiner introduced
by Nakayashiki [11]; its crystal limit was considered in [12, 13] (see also [9]).8(k,k+`)(ζ )
has the following properties:

ξ−D8(k,k+`)
i,j (ζ )ξD = 8(k,k+`)

i,j (ζ/ξ)

g(k,k+`)
k+∑̀
j=0

8
(k,k+`)
i,j (−q−1ζ )8

(k,k+`)
k−i ′,k+`−j (ζ ) = δi,i ′

(2)

whereg(k,k+`) = (q2k+2; q4)∞/(q2(k+`)+2; q4)∞.
If v ⊗ v′ ∈ V (λ(m−n)a )⊗ V (λ(n)b ), then we defineφA(ζ ) andφB(ζ ) by

φA(v ⊗ v′) =
n∑
j=0

φAj (v ⊗ v′)⊗ u(n)j φAj (v ⊗ v′) = v ⊗8(0,n)
j v′

φB(v ⊗ v′) =
m∑
j=0

φBj (v ⊗ v′)⊗ u(m)j φBj (v ⊗ v′) =
m−n∑
j ′=0

8
(0,m−n)
j ′ v ⊗8(m−n,m)

j ′,j v′.

(3)

Here, for clarity, we have suppressed theζ -dependence of all our intertwiners. It is the
componentsφAj (ζ ) (j = 0, . . . , n), andφBj (ζ ) (j = 0, . . . , m), that we identify with the
lattice insertions shown in figures 3(a) and (b) respectively.

Now defineH = ∑a,bHa,b with 0 6 a 6 m − n and 06 b 6 n, andF = H ⊗H∗.
We shall identifyF with the space on which our full transfer matrix acts. Note that we
can viewF as a linear map onH via the canonical identificationH⊗H∗ ' End(H). The
dual spaceF∗ is defined via〈f |g〉 = TrH(f ◦ g). The transfer matrix itself is defined as
T (ζ ) = T B(ζ ) ◦ T A(ζ ), whereT A(ζ ) andT B(ζ ) represent the insertion of double-infinite
vertical spinn/2 and spinm/2 lines respectively. They are given by

T A(ζ ) =
n∑
j=0

T Aj (ζ ) T Aj (ζ ) = g(0,n)φAj (ζ )⊗ φAn−j (ζ )t

T B(ζ ) =
m∑
j=0

T Bj (ζ ) T Bj (ζ ) = g(0,m) φBj (ζ )⊗ φBm−j (ζ )t
(4)

where t denotes the transpose. The motivation for the identification of the full space and
for the definition of the transfer matrices is essentially the same as that described in [2].

A vacuum state is a maximal eigenstate ofT (ζ ). There are(n+1)(m−n+1) degenerate
vacua, labelled as| vac〉a,b ∈ Ha,b ⊗H∗a,b, with 06 a 6 m− n, 06 b 6 n. We conjecture
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that, expressed as an element of End(H), the vacuum| vac〉a,b and its duala,b〈vac| are
given by

| vac〉a,b = (χ(m−n)a χ
(n)
b )−

1
2 (−q)Dπa,b a,b〈vac| = (χ(m−n)a χ

(n)
b )−

1
2πa,b(−q)D.

Here,χ(`)r = Tr
V (λ

(`)
r )
(q2D), andπa,b is the projectorH→ Ha,b. Using the definitions (3)

and (4), and properties (2), it is then simple to show thatT (ζ )| vac〉a,b = | vac〉m−n−a,b.
In order to consider other eigenstates ofT (ζ ) apart from the vacua, we must first

introduce some more intertwiners. On the level` irreducible highest-weight modules, we
have

9∗ s(ξ) : V (1)ξ ⊗ V (λ(`)r )→ V (λ
(`)
r+s)

8s(ξ) : V (λ(`)r )→ V (λ
(`)
r+s)⊗ V (1)ξ

wheres = ±1 (or± for short). Forv ∈ V (λ(`)r ), we define components by

9∗±(u(1)ε ⊗ v) = 9∗±ε (v) (ε = 0, 1)

8±(v) =
1∑
ε=0

8±ε (v)⊗ u(1)ε

where we again suppress theξ -dependence. We fix the normalization of these intertwiners
to be

〈λlr−1|9∗−1 (ξ)|λlr〉 = 1 〈λlr+1|9∗+0 (ξ)|λlr〉 = 1

〈λlr−1|8−0 (ξ)|λlr〉 = 1 〈λlr+1|8+1 (ξ)|λlr〉 = 1.

They have the following commutation relations with the intertwiner8(k,l)(ζ ) defined in
equation (1):

8
(k,l)
i,j (ζ )9

∗±
ε (ξ) =

∑
i ′,ε′

9∗∓(ξ)ε′8
(k,l)
i ′,j (ζ )R

(k,1)(ζ/ξ)
i,ε
i ′,ε′

8
(0,l)
j (ζ )9∗±ε (ξ) = 9∗∓(ξ)ε8(0,l)

j (ζ )τ (ζ/ξ)

8
(0,l)
j (ζ )8±ε (ξ) =

∑
ε′,j ′

R(1,l)(ξ/ζ )
ε′,j ′
ε,j 8

∓
ε′ (ξ)8

(0,l)
j ′ (ζ )

(5)

where

τ(ζ ) = ζ−1 (qζ
2; q4)∞(q3ζ−2; q4)∞

(qζ−2; q4)∞(q3ζ 2; q4)∞
.

We are now in a position to define our intertwiners on the tensor product space, and to
complete the diagonalization of our transfer matrixT (ζ ). The intertwiners we require are

ψ( 1
2 ) s(ξ) : V (1)ξ ⊗ V (λ(m−n)a )⊗ V (λ(n)b )→ V (λ

(m−n)
a+s )⊗ V (λ(n)b )

and

ψ(0) s,s̃ (ξ ) : V (λ(m−n)a )⊗ V (λ(n)b )→ V (λ
(m−n)
a+s )⊗ V (1)ξ ⊗ V (λ(n)b )→ V (λ

(m−n)
a+s )⊗ V (λ(n)

b+s̃ )

where agains, s̃ = ±1. On the elementv ⊗ v′ ∈ V (λ(m−n)a ) ⊗ V (λ(n)b ), they are given in
terms of the above intertwiners by

ψ( 1
2 ) s(ξ)(u(1)ε ⊗ v ⊗ v′) = ψ

( 1
2 ) s
ε (ξ)(v ⊗ v′) = (9∗sε (ξ)v)⊗ v′

ψ(0)s,s̃ (ξ )(v ⊗ v′) =
1∑
ε=0

(8s
ε(ξ)v)⊗ (9∗s̃ε (ξ)v′).
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Using the commutation relations (5) and the unitarity property of theR-matrix, it is
then straightforward to show that

T A(ζ )ψ
( 1

2 ) s
ε (ξ)| vac〉a,b = ψ( 1

2 ) s
ε (ξ)| vac〉a,n−b

T B(ζ )ψ
( 1

2 ) s
ε (ξ)| vac〉a,b = τ(ζ/ξ)ψ( 1

2 )−s
ε (ξ)| vac〉m−n−a,n−b

T A(ζ )ψ(0) s,s̃ (ξ )| vac〉a,b = τ(ζ/ξ)ψ(0) s,−s̃ (ξ )| vac〉a,n−b
T B(ζ )ψ(0) s,s̃ (ξ )| vac〉a,b = ψ(0)−s,−s̃ (ξ )| vac〉m−n−a,n−b

and hence that

T (ζ )ψ( 1
2 ) s
ε (ξ)| vac〉a,b = τ(ζ/ξ)ψ( 1

2 )−s
ε (ξ)| vac〉m−n−a,b

T (ζ )ψ(0) s,s̃ (ξ )| vac〉a,b = τ(ζ/ξ)ψ(0)−s,s̃ (ξ )| vac〉m−n−a,b .

The two eigenstatesψ
( 1

2 ) s
ε (ξ)| vac〉a,b andψ(0) s,s̃ (ξ )| vac〉a,b are spin 1

2 and spin 0 states
respectively. The spin12 excitation has aT A(ζ ) eigenvalue of 1 and aT B(ζ ) eigenvalue of
τ(ζ/ξ). The spin 0 excitation has aT A(ζ ) eigenvalue ofτ(ζ/ξ) and aT B(ζ ) eigenvalue of
1. This is the same pattern for the spectrum as that observed in the Bethe ansatz calculations
of [7] for the n = 1, m = 2 case. Multiparticle states arise as compositions ofψ( 1

2 )si (ξi)εi
andψ(0)s ′i ,s̃

′
i (ξi ′) acting on| vac〉a,b. The eigenvalue ofT (ζ ) is then simply the product of

all the τ(ζ/ξi) andτ(ζ/ξi ′) factors.
The S-matrix of the excitations in our model is given by the following relations:

ψ
( 1

2 )s1
ε1 (ξ1)ψ

( 1
2 )s2
ε2 (ξ2) =

∑
ε′1,ε

′
2,s
′
1,s
′
2

ψ
( 1

2 )s
′
2

ε′2
(ξ2)ψ

( 1
2 )s
′
1

ε′1
(ξ1)R̄

(1,1)(ξ)
ε′1,ε

′
2

ε1,ε2W
II
(
λ µ

µ′ ν

∣∣∣∣ ξ )
ψ(0) s1,s̃1(ξ1)ψ

(0) s2,s̃2(ξ2)

=
∑

s ′1,s
′
2,s̃
′
1,s̃
′
2

ψ(0) s ′2,s̃
′
2(ξ2)ψ

(0) s ′1,s̃
′
1(ξ1)W

I

(
λ µ

µ′ ν

∣∣∣∣ ξ)WII
(
λ̃ µ̃

µ̃′ ν̃

∣∣∣∣ ξ )
ψ(0)s1,s̃1(ξ1)ψ

( 1
2 )s2
ε2 (ξ2) =

∑
s ′1,s

′
2

ψ
( 1

2 )s
′
2

ε2 (ξ2)ψ
(0)s ′1,s̃1(ξ1)W

∗
(
λ µ

µ′ ν

∣∣∣∣ ξ )
where ξ = ξ1/ξ2. We use the notation thatλ,µ,µ′, ν are dominant integral weights of
level m − n, with λ, ν fixed andµ = λ + s2ρ̄, µ′ = λ + s ′1ρ̄, ν = λ + (s1 + s2)ρ̄ (where
ρ̄ = 31 − 30). The s ′1, s

′
2 sum is over alls ′1, s

′
2 = ±1 such thatν = λ + (s ′1 + s ′2)ρ̄.

The notation and summations for the tilded quantities are the same, except that the weights
λ̃, µ̃, µ̃′, ν̃ are of leveln. The remaining quantities are given for level` weights by

WI

(
λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣ ξ) = X(p2ξ−2)

X(p2ξ2)
W

1
`

(
λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣ ξ2

)
ξ δt,s+1−δr,u−1

WII
( λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣ ξ ) = X(ξ−2)

X(ξ2)
W

1
`

(
λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣ ξ2

)
ξ δt,s+1−δr,u−1

W ∗
( λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣ ξ ) = X(pξ−2)

X(pξ2)
W

1
`

(
λ(`)r λ(`)s
λ(`)u λ

(`)
t

∣∣∣∣p−1ξ2

)
(−ξq−(1+r))δt,s+1−δr,u−1qδr,t

where

X(z) = (z;p2, q4)∞(q4z;p2, q4)∞
(q2z;p2, q4)2∞

p = q`+2
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andW
1
` is the RSOS Boltzmann weight in the notation of equation (B.2) in [14].

When n = 1, m = 2 (the alternating spin1
2, spin 1 model), the above commutation

relations become

ψ
( 1

2 )
ε1 (ξ1)ψ

( 1
2 )
ε2 (ξ2) = −

∑
ε′1,ε

′
2

ψ
( 1

2 )

ε′2
(ξ2)ψ

( 1
2 )

ε′1
(ξ1)R

(1,1)(ξ)
ε′1,ε

′
2

ε1,ε2

ψ(0)(ξ1)ψ
(0)(ξ2) = −ψ(0)(ξ2)ψ

(0)(ξ1)

ψ(0)(ξ1)ψ
( 1

2 )
ε2 (ξ2) = τ(ξ)ψ( 1

2 )
ε2 (ξ2)ψ

(0)(ξ1).

Here, we have suppressed the appearance ofsi and s̃i , as in this case they are determined
solely by the space on which the operators act. These relations are consistent with the
results of [7].

We have now reached the point where we can discuss correlation functions and the
mixing of ground states. A correlation function of the infinite-volume vertex model we
are discussing is by definition a ratioZ{iN ,...,i1}a,b /Za,b. Here,Za,b is the partition function

described earlier, andZ{iN ,...,i1}a,b is a similarly weighted sum over a restricted set of spin
configurations. The restriction is to include only those configurations for which the spin
variables on some specifiedN edges have the fixed valuesiN , . . . , i1. Suppose thatN is
odd, and that theN edges are vertical ones located successively in one row. Then, our
correlation function will be given by the expression

F
{iN ,...,i1}
a,b =a,b 〈vac|T BiN (1)T AiN−1

(1)T BiN−2
(1) · · · T Ai2 (1)T Bi1 (1)| vac〉a′,n−b

= (g(0,m)) N+1
2 (g(0,n))

N−1
2 (χ(m−n)a χ

(n)
b )−1

×TrHa,b (q
2DφBiN (−q−1)φAiN−1

(−q−1)φBiN−2
(−q−1) · · ·φAi2 (−q−1)φBi1 (−q−1)

×φBm−i1(1)φAn−i2(1) · · ·φBm−iN−2
(1)φAn−iN−1

(1)φBm−iN (1)) (6)

where

a′ =
{
m− n− a for N = 1 mod 4

a for N = 3 mod 4.

(See [2] for a detailed explanation of this expression for the spin1
2 case; the

generalization to our case is straightforward.)
Now let us consider the case whenn = N = 1. Our formula (6) then gives us the

one-point function which corresponds to a restricted sum in which the local variable on the
central edge of the central vertical spinm/2 line is fixed (in an alternating spin12, spin
m/2 lattice). Suppose instead that we had started out with an infinite lattice consisting of
just spinm/2 lines. The algebraic picture of such pure models is considered in [15]. The
question arises as to whether, and how, the one-point function in our alternating spin lattice
might be related to the one-point in the pure lattice. We can supply a straightforward answer
to this question using the algebraic analysis we have described.

The argument is as follows. Whenn = 1, m > 1, our half-space isHa,b =
V (λ(m−1)

a ) ⊗ V (3b) where 06 a 6 m − 1, 0 6 b 6 1. In this case, we have the
irreducible decomposition

V (λ(m−1)
a )⊗ V (3b) = ⊕mc=0V (λ

(m)
c )⊗�a,bc (7)

where the sum runs over the levelm weightsλ(m)c , and�a,bc is the space of highest-weight
states inV (λ(m−n)a ) ⊗ V (3b). In a recent paper [16], Jimbo and Shiraishi constructed the
action of the deformed Virasoro algebra on�a,bc by making use of the operator

ψ(0)(ζ ) : V (λ(m−1)
a )⊗ V (3b)→ V (λ

(m−1)
a′ )⊗ V (1)ζ ⊗ V (3b)→ V (λ

(m−1)
a′ )⊗ V (31−b)
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which we have defined above (again we suppress thes and s̃ indices ofψ(0)(ζ )). One can
prove that

φB(ζ )ψ(0)(ξ) = ψ(0)(ξ)φB(ζ ).

Hence,φB(ζ ) commutes with the action of the deformed Virasoro algebra; it acts only on
the spaceV (λ(m)c ) in (7).

Now consider the consequences for the one-point function discussed above, (given by
(6) whenN = n = 1). The trace simply splits up into the trace over the different levelm

highest-weight modules in (7). Specifically, we have

F
{k}
a,b =

∑m
c=0F

{k}
c χ(m)c χ�a,bc∑m

c=0 χ
(m)
c χ�a,bc

(8)

whereF {k}c (ζ ), with (k = 0, . . . m), is the corresponding one-point function for the pure
spin m/2 lattice with the ground state labelled byc, andχ�a,bc = Tr�a,bc (q

2D). Thus, the
one-point function for the alternating lattice with a particular ground state is given as a
linear combination of the one-point functions associated with different ground states in the
pure lattice; there is a mixing of ground states.

Let us briefly discuss the relation between the above result and Baxter’s argument in
[17]. Consider the simplest case; in which the lattice consists of spin1

2 and spin 1 lines. The
idea of Baxter is to change the arrangement of the lines without changing the configuration
sums. This is possible because of the Yang–Baxter equation for the Boltzmann weights. A
configuration sum consists of the contributions of the chosen ground state and other states
which are modified from it at finitely many edges. Namely, it is a sum over diagrams
consisting of those edges on which the values of the local variables differ from the ground
state values. Usually, in such an expansion, contributions of larger diagrams are of higher
order inq. Suppose this were true for the alternating lattice; in order to compute the one-
point function of a spin 1 local variable on a given edge, we could move the spin1

2 lines
far away from this edge. Then, small diagrams of low order would only be associated with
the spin 1 lines near the chosen edge. This would imply that the one-point functions of the
alternating lattice should be the same as the one-point functions of the pure spin 1 lattice.
This is in contradiction with our results from the representation theory. However, the above
assumption about the size and the order of diagrams is not correct in the alternating lattice.
Consider a rectangular region consisting of spin 1 edges that is bordered by four spin1

2
lines. Take the ground state configuration on this lattice corresponding to(a, b) = (0, 0).
This ground state consists of alternating values 0 and 2 on the spin 1 edges in this region,
and 0 and 1 on the spin12 edge on its border. If we switch the configuration of these
variables (i.e. 0↔ 2 and 0↔ 1), the order of the contribution isq2 no matter how large
the region is. This explains the origin of mixing in the smallq expansion.

In fact we have performed such a smallq expansion for our alternating lattice, and
calculated up to orderq4 all the different one-point functions corresponding to the left-hand
side of (8) whenm = 2. The level two one-point functions on the right-hand side of the
equation were calculated by Idzumi [18]. To this order, the results agree with the mixing
formula and disagree with the pure one-point function.

Finally, suppose we wish to calculate a correlation function such as

a,b〈vac|T Ak (ζ )| vac〉a,n−b = g(0,n)(χ(m−n)a χ
(n)
b )−1 TrHa,b (q

2DφAk (−q−1ζ )φAn−k(ζ )) (9)

that only involves the insertion of spinn/2 lines into our alternating lattice. From
its definition (3), φA acts just on the right-hand side of the tensor productHa,b =
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V (λ(m−n)a )⊗ V (λ(n)b ), and so (9) is equal to

g(0,n)(χ
(n)
b )−1 Tr

V (λ
(n)
b )
(q2D8

(0,n)
k (−q−1ζ )8

(0,n)
n−k (ζ )).

This is the one-point function associated with the pure spinn/2 model with a single ground
state. There is no mixing of ground states when we calculate correlation functions involving
only insertions of spinn/2 lines into our alternating lattice. The physical argument that
was previously wrong is now right. If we move spinm/2 lines far away from our central
fixed spinn/2 lines, then diagrams that are of low order inq in the smallq expansion are
indeed small in size and restricted to the pure spinn/2 region.

In summary, we have constructed an algebraic picture of infinite-volume alternating
spinn/2, spinm/2 (16 n < m) vertex models. We have diagonalized the transfer matrix.
The eigenstates are made up from spin1

2 and spin 0 particle-like excitations. We have
computed the two-particleS-matrix elements for these excitations. A trace formula is given
for local correlation functions. Specializing to 1= n < m, we have expressed the one-point
function associated with a spinm/2 line as a linear combination of the corresponding one-
point functions in the pure spinm/2 model with different ground states. For the general
alternating model(16 n < m), we have shown that the one-point function associated with
a spinn/2 line is equal to the corresponding one-point function in the pure spinn/2 model,
without mixing of ground states.

In this letter, we have presented in brief the main results of our analysis of alternating
spin vertex models. A more detailed explanation will be published elsewhere.
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Int. J. Mod. Phys.A 9 4449–84


